In evolutionary theory, adaptation is the biological mechanism by which organisms adjust to new environments or to changes in their current environment. Although scientists discussed adaptation prior to the 1800s, it was not until then that Charles Darwin and Alfred Russel Wallace developed the theory of natural selection.

Wallace believed that the evolution of organisms was connected in some way with adaptation of organisms to changing environmental conditions. In developing the theory of evolution by natural selection, Wallace and Darwin both went beyond simple adaptation by explaining how organisms adapt and evolve. The idea of natural selection is that traits that can be passed down allow organisms to adapt to the environment better than other organisms of the same species. This enables better survival and reproduction compared with other members of the species, leading to evolution.

Organisms can adapt to an environment in different ways. They can adapt biologically, meaning they alter body functions. An example of biological adaptation can be seen in the bodies of people living at high altitudes, such as Tibet. Tibetans thrive at altitudes where oxygen levels are up to 40 percent lower than at sea level. Breathing air that thin would cause most people to get sick, but Tibetans' bodies have evolved changes in their body chemistry. Most people can survive at high altitudes for a short time because their bodies raise their levels of hemoglobin, a protein that transports oxygen in the blood. However, continuously high levels of hemoglobin are dangerous, so increased hemoglobin levels are not a good solution to high-altitude survival in the long term. Tibetans seemed to have evolved genetic mutations that allow them to use oxygen far more efficently without the need for extra hemoglobin.

Organisms can also exhibit behavioral adaptation. One example of behavioral adaptation is how emperor penguins in Antarctica crowd together to share their warmth in the middle of winter.

Scientists who studied adaptation prior to the development of evolutionary theory included Georges Louis Leclerc Comte de Buffon. He was a French mathematician who believed that organisms changed over time by adapting to the environments of their geographical locations. Another French thinker, Jean Baptiste Lamarck, proposed that animals could adapt, pass on their adaptations to their offspring, and therefore evolve. The example he gave stated the ancestors of giraffes might have adapted to a shortage of food from short trees by stretching their necks to reach higher branches. In Lamarck's thinking, the offspring of a giraffe that stretched its neck would then inherit a slightly longer neck. Lamarck theorized that behaviors aquired in a giraffe's lifetime would affect its offspring. However, it was Darwin's concept of natural selection, wherein favorable traits like a long neck in giraffes suvived not because of aquired skills, but because only giraffes that had long enough necks to feed themselves survived long enough to reproduce. Natural selection, then, provides a more compelling mechanism for adaptation and evolution than Lamarck's theories.

Adaptation

Some creatures, such as this leafy sea dragon fish (Phycodurus eques) have evolved adaptations that allow them to blend in with their environment (in this case, seaweed) to avoid the attention of hungry predators.

Noun

a modification of an organism or its parts that makes it more fit for existence. An adaptation is passed from generation to generation.

behavioral adaptation

Noun

way an organism acts in order to survive or thrive in its environment.

biological adaptation

Noun

physical change in an organism that results over time in reaction to its environment.

evolution

Noun

change in heritable traits of a population over time.

naturalist

Noun

person who studies the natural history or natural development of organisms and the environment.

Noun

process by which organisms that are better -adapted to their environments produce more offspring to transmit their genetic characteristics.

Noun

process by which organisms that are better -adapted to their environments produce more offspring to transmit their genetic characteristics.